Search results for "Chemical Vapor Deposition"
showing 10 items of 199 documents
In Situ Heating TEM Study of Onion-like WS2 and MoS2 Nanostructures Obtained via MOCVD
2007
We report on the in situ heating transmission electron microscopy (TEM) study of WS2 and MoS2 nanoparticles obtained from metal–organic chemical vapor deposition (MOCVD). The general behavior of MoS2 and WS2 is similar: Round, amorphous particles in the pristine sample transform to hollow, onion-like particles upon annealing. A second type of particle with straight layers exhibits only minor changes. A significant difference between both compounds could be demonstrated in their crystallization behavior. The results of the in situ heating experiments are compared to those obtained from an ex situ annealing process under Ar.
Absorption and luminescence in amorphous SixGe1-xO2 films fabricated by SPCVD
2012
Abstract Optical absorption and photoluminescence of Ge-doped silica films fabricated by the surface-plasma chemical vapor deposition (SPCVD) are studied in the 2–8 eV spectral band. The deposited on silica substrate films of about 10 μm in thickness are composed as x·GeO2-(1-x)·SiO2 with x ranging from 0.02 to 1. It is found that all as‐deposited films do not luminesce under the excitation by a KrF (5 eV) excimer laser, thus indicating lack of oxygen deficient centers (ODCs) in them. After subsequent fusion of silicon containing (x
Ge-doped silica nanoparticles: production and characterisation
2016
Silica nanoparticles were produced from germanosilicate glasses by KrF laser irradiation. The samples were investigated by cathodoluminescence and scanning electron microscopy, providing the presence of nanoparticles with size from tens up to hundreds of nanometers. The emission of the Germanium lone pair center is preserved in the nanoparticles and atomic force microscopy revealed the presence of no spherical particles with a size smaller than ~4 nm. The absorption coefficient enhancement induced by Ge doping is reputed fundamental to facilitate the nanoparticles production. This procedure can be applied to other co-doped silica materials to tune the nanoparticles features.
Structural studies of nano/micrometric semiconducting GaInP wires grown by MOCVD
2004
Abstract 3D (Ga,In)/GaInP structures were grown on polycrystalline InP substrates by the MOCVD technique. The growth temperature was varied from 600 to 700 °C. Trimethyl-gallium and N 2 were, respectively, used as the Ga source and the carrier gas. These newly presented 3D structures have a scepter-like shape and are composed of a long GaInP internal support (rods of tens of μm long and tens of nm diameter) capped by a micrometer size metallic (Ga,In) structure. These structures were characterized by the SEM, EDX and TEM techniques. High-resolution TEM shows that the support rods present a GaInP single crystal structure. A preliminary discussion about the growth step mechanism, based on the…
Growth of nanometric CuGaxOystructures on copper substrates
2005
This paper presents an alternative method based on the metal–organic chemical vapour deposition technique to obtain new nanowire structures. Here, the metal–organic precursor acts as a catalyst and interacts with a metallic substrate to produce 3D structures such as nanowires. In the present case, trimethyl gallium interacts with a copper metallic substrate to build a single-crystalline CuGaxOy wire structure. Electronic microscopy techniques on image or diffraction modes have provided the structural and chemical characterization of the obtained nanowires.
Soft X-ray photoelectron microscopy used for the characterization of diamond, a-C and CN , thin films
2002
Abstract This article gives an overview about the application of X-ray photoemission electron microscopy (X-PEEM) used for the analysis of carbon thin films. We present the results of an X-ray absorption near edge structure (XANES) study of CVD diamond, a-C and CNx films on Si (100) as well as a defect analysis of a hard disc scratch test. The sp2/sp3 ratio of the carbon films was determined and mapped in the electron micrographs, which show localized defects in the surface.
High-Mobility, Wet-Transferred Graphene Grown by Chemical Vapor Deposition
2019
We report high room-temperature mobility in single layer graphene grown by Chemical Vapor Deposition (CVD) after wet transfer on SiO$_2$ and hexagonal boron nitride (hBN) encapsulation. By removing contaminations trapped at the interfaces between single-crystal graphene and hBN, we achieve mobilities up to$\sim70000cm^2 V^{-1} s^{-1}$ at room temperature and$\sim120000cm^2 V^{-1} s^{-1}$ at 9K. These are over twice those of previous wet transferred graphene and comparable to samples prepared by dry transfer. We also investigate the combined approach of thermal annealing and encapsulation in polycrystalline graphene, achieving room temperature mobilities$\sim30000 cm^2 V^{-1} s^{-1}$. These …
In-Situ Growth of Ultrathin Films of NiFe-LDHs: Towards a Hierarchical Synthesis of Bamboo-Like Carbon Nanotubes
2014
The synthesis of ultrathin films (UTFs) of NiFe-LDHs has been achieved by means of an in situ hydrothermal approach, leading to a flat disposition of the LDH crystallites on the substrate, in clear contrast to the most common perpendicular orientation reported to date. Experimental factors like time of synthesis or the nature of the substrate, seem to play a crucial role during the growing process. The 2D morphology of the NiFe-LDH crystallites was kept after a calcination procedure, leading to a topotactic transformation into mixed-metal oxide platelets. Hereby, in order to study the catalytic behavior of our samples, a chemical vapor deposition process is explored upon the as-synthesized …
Metallic interconnects for solid oxide fuel cell: Effect of water vapour on oxidation resistance of differently coated alloys
2009
International audience; The need of interconnect to separate fuel and oxidant gasses and connect individual cells into electrical series in a SOFC stack appears as one of the most important point in fuel cell technology. Due to their high electrical and thermal conductivities, thermal expansion compatibility with the other cell components and lowcost, ferritic stainless steels (FSS) are nowconsidered to be among the most promising candidate materials as interconnects in SOFC stacks. Despite the formation at 800 ◦C of a protective chromia Cr2O3 scale, it can transform in volatile chromium species, leading to the lost of its protectiveness and then the degradation of the fuel cell. A previous…
Nanocrystal metal-oxide-semiconductor memories obtained by chemical vapor deposition of Si nanocrystals
2002
We have realized nanocrystal memories by using silicon quantum dots embedded in silicon dioxide. The Si dots with the size of few nanometers have been obtained by chemical vapor deposition on very thin tunnel oxides and subsequently coated with a deposited SiO2 control dielectric. A range of temperatures in which we can adequately control a nucleation process, that gives rise to nanocrystal densities of ∼3×1011 cm−2 with good uniformity on the wafer, has been defined. The memory effects are observed in metal-oxide-semiconductor capacitors or field effect transistors by significant and reversible flat band or threshold voltage shifts between written and erased states that can be achieved by …